Proteasome inhibitors modulate chemokine production in lung epithelial and monocytic cells.
نویسندگان
چکیده
Proteasome inhibition has become a target for antitumour and anti-inflammatory therapy. The present study investigated the influence of cysteine proteinase and proteasome inhibitors on chemokine production in lung epithelial cells and monocytic cells. The lung carcinoma cell lines A549, SK-MES, NCI-H727, virus-transformed bronchial epithelial cell line BEAS-2B, primary lung epithelial cells, and the acute monocytic leukaemia cell lines Mono-Mac-6 and THP-1 were incubated with proteasome (N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN), beta-lactone) or cysteine proteinase inhibitor (L-trans-Epoxysuccinyl-Leu-3-methylbutylamide-ethyl ester) and the influence on chemokine production (interleukin-8: IL-8, monocyte chemoattractant protein-1, RANTES) was quantified at protein and mRNA levels. Inhibition of proteasome activity by ALLN and beta-lactone resulted in significantly increased IL-8 secretion (5- to 22-fold). Cysteine proteinase inhibitors did not influence chemokine production. The simultaneous rise in IL-8 mRNA was caused by an increased half-life of mRNA and increased RNA synthesis. Moreover, analysis of transcription factor activation revealed induction of activator protein-1 (c-Jun) activity by proteasome inhibition, whereas nuclear factor-kappaB (p50 and p65) was not activated. The significant increase in IL-8 production after proteasome inhibition was also observed in primary lung epithelial cells and in monocytic cells. In addition, the secreted IL-8 was biologically active as shown by the neutrophil chemotaxis assay. In conclusion, it was shown that proteasome inhibitors stimulate interleukin-8 secretion in lung epithelial cells and monocytic cells, thus recruiting neutrophils.
منابع مشابه
Evaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)
Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...
متن کاملGene expression profiling of the effects of organic dust in lung epithelial and THP-1 cells reveals inductive effects on inflammatory and immune response genes.
The intensification and concentration of animal production operations expose workers to high levels of organic dusts in the work environment. Exposure to organic dusts is a risk factor for the development of acute and chronic respiratory symptoms and diseases. Lung epithelium plays important roles in the control of immune and inflammatory responses to environmental agents to maintain lung healt...
متن کاملVascular Endothelial Growth Factor Induces CXCL1 Chemokine Release via JNK and PI-3K-Dependent Pathways in Human Lung Carcinoma Epithelial Cells
Lung cancer cells express different chemokines and chemokine receptors that modulate leukocyte infiltration within tumor microenvironment. In this study we screened several mediators/growth factors on CXCL1 release in human carcinoma epithelial cells. Of the tested mediators, VEGF was found to have a robust increase in causing CXCL1 release. VEGF stimulated CXCL1 release and mRNA expression in ...
متن کاملHuman neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway.
Antimicrobial human neutrophil peptides (HNPs) play a pivotal role in innate host defense against a broad spectrum of prokaryotic pathogens. In addition, HNPs modulate cellular immune responses by producing the chemokine interleukin-8 (IL-8) in myeloid and epithelial cells and by exerting chemotaxis to T cells, immature dendritic cells, and monocytes. However, the mechanisms by which HNPs modul...
متن کاملMyeloid related protein-8/14 stimulates interleukin-8 production in airway epithelial cells.
Excessive neutrophil recruitment is implicated in the pathogenesis of chronic lung diseases by causing collateral tissue damage. The cells move from the circulation in response to chemokines, such as interleukin (IL)-8, that are secreted by several lung cell types including epithelial cells. This study has investigated factors present in bronchial secretions that are responsible for IL-8 expres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European respiratory journal
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2004